
Handel-CodePipeline Documentation
Release 0.0.6

David Woodruff

Nov 27, 2018

Getting Started

1 Introduction 3

2 Installation 5

3 Tutorial 7

4 CLI Reference 11

5 Using Handel-CodePipeline 15

6 Handel-CodePipeline File 17

7 Approval 19

8 CloudFormation 21

9 CodeBuild 23

10 CodeCommit 27

11 GitHub 29

12 Handel 31

13 Handel Delete 33

14 Invoke Lambda 35

15 NPM 37

16 Pypi 39

17 Runscope 41

18 Slack Notify 43

i

ii

Handel-CodePipeline Documentation, Release 0.0.6

Handel-CodePipeline is a tool to easily create AWS CodePipelines, including support for Handel deployments.

Getting Started 1

http://handel.readthedocs.io/en/latest/

Handel-CodePipeline Documentation, Release 0.0.6

2 Getting Started

CHAPTER 1

Introduction

Handel-CodePipeline is a command-line library that helps you easily create Continuous Delivery pipelines in the AWS
CodePipeline service.

Included in this library is the support for doing deployments using the Handel deployment library.

1.1 How does this library work?

You specify a file called handel-codepipeline.yml in your code repository. This file contains a YAML specification of
how the library should configure your pipeline.

Once you’ve defined your handel-codepipeline.yml file, you can run the library. It will prompt you for further pieces
of information, after which it will create the pipeline.

3

https://handel.readthedocs.io

Handel-CodePipeline Documentation, Release 0.0.6

4 Chapter 1. Introduction

CHAPTER 2

Installation

Handel-CodePipeline is a CLI tool written in Node.js. In order to install it, you will first need Node.js installed on
your machine.

2.1 Installing Node.js

The easiest way to install Node.js is to download the compiled binaries from the Node.js website. Handel-CodePipeline
requires Node.js version 6.x or greater in order to run.

Once you have completed the installation on your machine, you can verify it by running these commands:

node --version
npm --version

The above commands should show you the versions of Node and NPM, respectively.

2.2 Installing Handel-CodePipeline

Once you have Node.js installed, you can use the NPM package manager that is bundled with Node.js to install
Handel-CodePipeline:

npm install -g handel-codepipeline

When the above commands complete successfully, you should be able to run the Handel-CodePipeline CLI to deploy
your application.

2.3 Next Steps

See the Tutorial section for a tutorial on deploying a simple Node.js application to AWS using Handel-CodePipeline.

5

https://nodejs.org/en/

Handel-CodePipeline Documentation, Release 0.0.6

6 Chapter 2. Installation

CHAPTER 3

Tutorial

This page contains a tutorial showing how to use Handel-CodePipeline to set up a pipeline using Handel for deploy-
ments.

Important: Before going through this tutorial, make sure you have installed Handel-CodePipeline on your machine
as shown in the Installation section.

This tutorial also assumes you already have an application with a valid Handel file configured.

3.1 Tutorial

This tutorial contains the following steps:

1. Write the Handel-CodePipeline File

2. Write the CodeBuild BuildSpec File

3. Deploy the Pipeline

Follow along with each of these steps in the sections below in order to complete the tutorial.

Note: This tutorial assumes you are deploying a Node.js application. You may need to modify some further things in
this tutorial if you are using another platform.

3.1.1 Write the Handel-CodePipeline File

We’re going to create a single pipeline with three phases:

1. Pull code from a GitHub branch.

2. Build the project using CodeBuild.

7

http://handel.readthedocs.io/en/latest/

Handel-CodePipeline Documentation, Release 0.0.6

3. Deploy the project using Handel.

Create a file named handel-codepipeline.yml in the root of your repository with the following contents:

version: 1

name: <your-app-name> # Replace with your own app name

pipelines:
dev:
phases:
- type: github

name: Source
owner: <your-github-username> # Replace with your own GitHub username
repo: <your-github-repo> # Replace with your own GitHub repository name
branch: master

- type: codebuild
name: Build
build_image: aws/codebuild/nodejs:6.3.1

- type: handel
name: Deploy
environments_to_deploy:
- dev

Important: Remember to replace the noted sections in the above file with your own information.

3.1.2 Write the CodeBuild BuildSpec File

Our second phase uses the AWS CodeBuild service to perform any build steps required. This service requires that
you put a file called buildspec.yml at the root of the repository. This file contains instructions about the commands
CodeBuild should run.

Create a file called buildspec.yml at the root of your repository with the following contents:

version: 0.2

phases:
build:
commands:
- npm install

artifacts:
files:
- ./**/*

You will likely need to modify this file to run different commands for your application build process. See the Code-
Build documentation for more information on the buildspec.yml file.

3.1.3 Deploy the Pipeline

Important: Before running Handel-CodePipeline, you must be logged into your AWS account on the command line.
You can do this by setting your AWS access keys using the AWS CLI.

See Configuring the AWS CLI for help on doing this once you’ve installed the AWS CLI.

8 Chapter 3. Tutorial

https://aws.amazon.com/codebuild/
http://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
http://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html

Handel-CodePipeline Documentation, Release 0.0.6

If you work for an organization that uses federated logins through something like ADFS, then you’ll have a different
process for logging in on the command-line. In this case, ask your organization how they login to AWS on the
command-line.

Now that you have your handel-codepipeline.yml and buildspec.yml files, you can deploy the pipeline:

handel-codepipeline deploy

The pipeline will ask a series of questions with additional information and secrets it needs:

info: Welcome to the Handel CodePipeline setup wizard
? Please enter the name of the pipeline from your handel-codepipeline.yml file that
→˓you would like to deploy
? Please enter the name of the account where your pipeline will be deployed
? Please enter the path to the directory containing the Handel account configuration
→˓files
? 'GitHub' phase - Please enter your GitHub access token

Once you’ve provided all required information, the pipeline will be created with output something like the following:

info: Creating source phase 'GitHub'
info: Creating build phase CodeBuild project my-pipeline-dev-Build
info: Creating CodePipeline for the pipeline 'my-pipeline-dev'
info: Finished creating pipeline in 111111111111

3.2 Next Steps

Now that you’ve deployed a simple pipeline, where do you go next?

3.2.1 Learn more about Handel-CodePipeline

Read through the following documents in the Handel-CodePipeline Basics section:

• Using Handel-CodePipeline

• Handel-CodePipeline File

3.2.2 Learn about the different phase types

Once you understand Handel-CodePipelines’s basic configuration, see the Supported Pipeline Phase Types section,
which contains information about the different phase types supported in Handel-CodePipeline

3.2. Next Steps 9

Handel-CodePipeline Documentation, Release 0.0.6

10 Chapter 3. Tutorial

CHAPTER 4

CLI Reference

The Handel-CodePipeline command-line interface should be run in a directory with a handel-codepipeline.yml file.

It defines four commands: check, deploy, delete and list-required-secrets

4.1 handel-codepipeline check

Validates that a given Handel-CodePipeline configuration is valid.

4.1.1 Parameters

handel-codepipeline check does not accept parameters.

4.2 handel-codepipieline deploy

Validates and deploys the resources in a given environment.

4.2.1 Parameters

Parameter Type Re-
quired

De-
fault

Description

–pipeline <value> string Yes The pipeline from your handel-codepipeline.yml file that you
wish to deploy.

–account_name
<value>

string Yes The account you are deploying into.

–secrets <value> Se-
crets

yes The base64 encoded JSON string of the deploy secrets. See
Secrets

11

Handel-CodePipeline Documentation, Release 0.0.6

4.2.2 Secrets

A base64 encoded array of secrets objects. Note that the required secrets can be obtained with handel-codepipeline
list-required-secrets.

[
{

"phaseName": "Github", // The phase the secret is associated with.
"name": "githubAccessToken", // The name of the secret
"message": "'Github' phase - Please enter your GitHub access token", // This is

→˓not necessary, but will be present if the original object was obtained from handel-
→˓codepipeline list-required-secrets.

"value": "ABCDEFGHIJKLMNOPQRSTUVWXYZ" // The secret's value
}

]

4.3 handel-codepipeline delete

Deletes the AWS CodePipeline.

4.3.1 Parameters

Parameter Type Re-
quired

De-
fault

Description

–pipeline <value> string Yes The pipeline from your handel-codepipeline.yml file that you
wish to delete.

–account_name
<value>

string Yes The account you are deploying into.

4.4 handel-codepipeline list-required-secrets

Returns a JSON string with all of the secrets required for the pipeline.

4.4.1 Parameters

Parameter Type Re-
quired

De-
fault

Description

–pipeline
<value>

string Yes The pipeline from your handel-codepipeline.yml file that you want to
retreive required secrets from.

4.4.2 Example Response

[
{
"phaseName": "Github",
"name": "githubAccessToken",

(continues on next page)

12 Chapter 4. CLI Reference

Handel-CodePipeline Documentation, Release 0.0.6

(continued from previous page)

"message": "'Github' phase - Please enter your GitHub access token"
},
{
"phaseName": "npmDeploy",
"name": "npmToken",
"message": "npmDeploy' phase - Please enter your NPM Token"

},
{
"phaseName": "pypiDeploy",
"name": "pypiUsername",
"message": "'pypiDeploy' phase - Please enter your PyPi username"

},
{
"phaseName": "pypiDeploy",
"name": "pypiPassword",
"message": "'pypiDeploy' phase - Please enter your PyPi password"

},
{
"phaseName": "RunscopeTests",
"name": "runscopeTriggerUrl",
"message": "'RunscopeTests' phase - Please enter your Runscope Trigger URL"

},
{
"phaseName": "RunscopeTests",
"name": "runscopeAccessToken",
"message": "'RunscopeTests' phase - Please enter your Runscope Access Token"

},
{
"phaseName": "Notify",
"name": "slackUrl",
"message": "'Notify' phase - Please enter the URL for Slack Notifications"

}
]

4.4. handel-codepipeline list-required-secrets 13

Handel-CodePipeline Documentation, Release 0.0.6

14 Chapter 4. CLI Reference

CHAPTER 5

Using Handel-CodePipeline

Handel-CodePipeline is a command-line utility that you can use to facilitate creation of CodePipelines that use the
Handel library for deployment. This page details how to use this library.

5.1 AWS Permissions

When you run Handel-CodePipeline to deploy a new pipeline, you must run it with a set of AWS IAM credentials that
have administrator privileges. This is because Handel-CodePipeline creates roles for the deploy phase of the pipeline
that have administrator privileges.

Once the pipeline is deployed, it will only use the created role for deployments, so you won’t need to keep the user
around with administrator privileges. Since human users are recommended to have non-administrative permissions, it
is recommended you use a temporary user with admin permissions to create the pipeline, then delete that user once
the pipeline is created.

5.2 Creating New Pipelines

To deploy a new pipeline, do the following:

1. Create a new Handel-CodePipeline File in your repository.

2. Install Handel-CodePipeline:

npm install -g handel-codepipeline

3. Ensure you have your AWS credentials configured on the command line.

This command will prompt you for your AWS Access Key ID and Secret
→˓Access Keys
aws configure

15

Handel-CodePipeline Documentation, Release 0.0.6

Note: If you specified a profile when running aws configure above, you’ll need to make Handel-
CodePipeline aware of which profile to use by setting the AWS_PROFILE environment variable.

For example, if you configured your credentials in a profile named my-account, you’ll run export
AWS_PROFILE=my-account on Mac/Linux to set the environment variable that tells Handel-
CodePipeline which profile to use.

4. Run Handel-CodePipeline:

handel-codepipeline deploy

5. Handel-CodePipeline will walk you through a series of questions, asking you to provide further input:

Welcome to the Handel CodePipeline setup wizard
? Please enter the name of the pipeline from your handel-codepipeline.yml
→˓file that you would like to deploy prd
? Please enter the name of the account where your pipeline will be
→˓deployed my-account
? Please enter the path to the directory containing the Handel account
→˓configuration files /path/to/account/config/files
? Please enter a valid GitHub access token (CodePipeline will use this to
→˓pull your repo) SOMEFAKETOKEN

After you provide the appropriate input, Handel-CodePipeline will deploy the pipeline with the specified phases.

16 Chapter 5. Using Handel-CodePipeline

CHAPTER 6

Handel-CodePipeline File

Handel-CodePipeline requires you to specify a pipeline specification file, which contains information on how your
pipeline should be configured. This specification file must be named handel-codepipeline.yml. It doesn’t contain any
secrets, so it may be committed to your repository alongside your Handel file.

6.1 Handel-CodePipeline File Specification

The Handel-Codepipeline file is a YAML file that has the following schema:

version: 1

name: <app_name>

pipelines:
<pipeline_name>:
phases:
- type: <phase_type>

name: <phase_name>
<phase_params>

The above file schema shows that you can specify one or more pipelines, giving them a unique <pipeline_name>. In
each pipeline, you specify an ordered series of phases. Each phase has a <type> and a <name>. The type field is
defined by Handel-Codepipeline, and the name field is one that you specify.

In addition, you must specify a top-level name field, which is a string you choose for the overall name of your
application.

Each phase then has additional parameters that are specific to the phase type. See the Supported Pipeline Phase Types
section for information on each phase type.

Important: The first two phases are required to be of a certain type. The first phase must be a source code action
type such as github. The second phase must be a build action type such as codebuild.

17

Handel-CodePipeline Documentation, Release 0.0.6

18 Chapter 6. Handel-CodePipeline File

CHAPTER 7

Approval

The Approval phase type configures a pipeline phase to require manual approval before proceeding with the rest of the
pipeline.

7.1 Parameters

Parame-
ter

Type Re-
quired

Default Description

type string Yes ap-
proval

This must always be approval for the Approval phase type.

name string Yes The value you want to show up in the CodePipeline UI as your phase
name.

7.2 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

7.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the GitHub phase being configured:

version: 1

pipelines:
dev:
...
phases:

(continues on next page)

19

Handel-CodePipeline Documentation, Release 0.0.6

(continued from previous page)

- type: approval
name: ManualApproval

...

20 Chapter 7. Approval

CHAPTER 8

CloudFormation

The CloudFormation phase type configures a pipeline phase to deploy a CloudFormation template

8.1 Parameters

Pa-
rame-
ter

Type Re-
quired

Default Description

type string Yes cloud-
forma-
tion

This must always be cloudformation for the CloudFormation phase type.

name string Yes The value you want to show up in the CodePipeline UI as your phase name.
tem-
plate_path

string Yes The path in your repository to your CloudFormation template.

de-
ploy_role

string Yes The role CloudFormation will use to create your role. This role must already
exist in your account and must be assumable by CloudFormation.

8.2 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

8.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the CloudFormation phase being configured:

21

Handel-CodePipeline Documentation, Release 0.0.6

version: 1

pipelines:
dev:
phases:
...
- type: cloudformation

name: Deploy
template_path: cf-stack.yml
deploy_role: myservicerole

...

22 Chapter 8. CloudFormation

CHAPTER 9

CodeBuild

The CodeBuild phase type configures a pipeline phase to build the source code pulled from the repository. The second
phase of every pipeline created with Handel-CodePipeline must be a build code phase such as this CodeBuild type.

9.1 Build Configuration

You can specify any arbitrary build process in this phase using the buildspec.yml file. You must have this buildspec.yml
file in the root of your repository or the CodeBuild phase will fail.

9.2 Parameters

Parame-
ter

Type Re-
quired

Default Description

type string Yes code-
build

This must always be codebuild for the CodeBuild phase type.

name string Yes The value you want to show up in the CodePipeline UI as your phase
name.

build_image string Yes The name of the CodeBuild image to use when building your code.
See the CodeBuild documentation for a list of images.

environ-
ment_variables

map No {} A set of key/value pairs that will be injected into the running Code-
Build jobs.

cache string No no-cache Whether to enable a build cache for this phase. Valid values are no-
cache and s3.

build_role string No Handel-
created
role

The role that will be assigned to the CodeBuild project. This role
must already exist in your account and must be assumable by Code-
Build.

ex-
tra_resources

Extra
Re-
sources

No A list of extra resources that are necessary to build your code. For
example, an S3 bucket in which to cache files.

23

http://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
http://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref.html

Handel-CodePipeline Documentation, Release 0.0.6

Note: You can use a custom build image in your account’s EC2 Container Registry by prefixing the
build_image parameter with <account>/. For example, <account>/IMAGE:TAG will resolve at run-time to
AWS_ACCOUNT_ID.dkr.ecr.AWS_REGION.amazonaws.com/IMAGE:TAG.

Using a custom build image also configures the CodeBuild image in privileged mode, which allows you to run Docker
inside your image if needed.

9.2.1 Extra Resources

The extra_resources section is defined by the following schema:

extra_resources:
<resource_name>:
type: <service_type>
<service_param>: <param_value>

Example S3 bucket:

extra_resources:
cache-bucket:
type: s3
bucket_name: my-cache-bucket

The configuration for extra resources matches the configuration in Handel, except that extra resources cannot declare
their own dependencies in the dependencies block.

The following services are currently supported in extra_resources:

• API Access

• DynamoDB

• S3

Note: If you use extra_resources together with a custom build_role, you are responsible for making sure that your
custom build role allows access to the extra resources that are created.

Environment Variable Prefix

Your extra resources will be exposed to your build as environment variables.

The naming of these environment matches that used by Handel, except that the pipeline name is used instead of the
environment name.

9.3 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

24 Chapter 9. CodeBuild

https://handel.readthedocs.io
https://handel.readthedocs.io/en/latest/supported-services/apiaccess.html
https://handel.readthedocs.io/en/latest/supported-services/dynamodb.html
https://handel.readthedocs.io/en/latest/supported-services/s3.html
https://handel.readthedocs.io/en/latest/handel-basics/consuming-service-dependencies.html#environment-variable-prefix

Handel-CodePipeline Documentation, Release 0.0.6

9.4 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the CodeBuild phase being configured:

version: 1

pipelines:
dev:
phases:
...
- type: codebuild

name: Build
build_image: aws/codebuild/docker:1.12.1
environment_Variables:

MY_CUSTOM_ENV: my_custom_value
...

This is a snippet of a handel-codepipeline.yml file which includes an S3 bucket as an extra resource and a custom IAM
role:

version: 1

pipelines:
dev:
phases:
...
- type: codebuild

name: Build
build_image: aws/codebuild/docker:1.12.1
environment_Variables:

MY_CUSTOM_ENV: my_custom_value
build_role: my-custom-codebuild-role
extra_resources:

cache_bucket:
type: s3
#Everything else, including the name, is optional

...

9.4. Example Phase Configuration 25

Handel-CodePipeline Documentation, Release 0.0.6

26 Chapter 9. CodeBuild

CHAPTER 10

CodeCommit

The CodeCommit phase type configures a pipeline phase to pull source code from CodeCommit. The pipeline is
launched when code is pushed to CodeCommit on the specified branch. The first phase of every pipeline created with
Handel-CodePipeline must be a source code phase such as this CodeCommit type.

10.1 Parameters

Pa-
rame-
ter

Type Re-
quired

Default Description

type string Yes code-
commit

This must always be codecommit for the CodeCommit phase type.

name string Yes The value you want to show up in the CodePipeline UI as your phase name.
repo string Yes The name of the CodeCommit repository containing the source code that

will build and deploy in the pipeline.
branch string No master The name of the Git branch in the repository from which the pipeline will

be invoked.

10.2 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

10.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the CodeCommit phase being configured:

27

Handel-CodePipeline Documentation, Release 0.0.6

version: 1

pipelines:
dev:
phases:
- type: codecommit

name: Source
owner: byu-oit-appdev
repo: aws-credential-detector
branch: master

...

28 Chapter 10. CodeCommit

CHAPTER 11

GitHub

The GitHub phase type configures a pipeline phase to pull source code from GitHub. The pipeline is launched when
code is pushed to GitHub on the specified branch. The first phase of every pipeline created with Handel-CodePipeline
must be a source code phase such as this GitHub type.

11.1 Parameters

Param-
eter

Type Re-
quired

De-
fault

Description

type string Yes github This must always be github for the GitHub phase type.
name string Yes The value you want to show up in the CodePipeline UI as your phase name.
owner string Yes The GitHub username or organization where the repository lives.
repo string Yes The name of the GitHub repository containing the source code that will build

and deploy in the pipeline.
branch string No mas-

ter
The name of the Git branch in the repository from which the pipeline will be
invoked.

11.2 Secrets

In addition to the parameters specified in your handel-codepipeline.yml file, this phase will prompt you for the follow-
ing secret information when creating your pipeline:

• GitHub personal access token.

This is not saved in your handel-codepipeline.yml file because by having the token others can interact with GitHub on
your behalf.

29

Handel-CodePipeline Documentation, Release 0.0.6

11.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the GitHub phase being configured:

version: 1

pipelines:
dev:
phases:
- type: github

name: GitHub
owner: byu-oit-appdev
repo: aws-credential-detector
branch: master

...

30 Chapter 11. GitHub

CHAPTER 12

Handel

The Handel phase type configures a pipeline phase to deploy one or more of your application environments using the
Handel library. You may configure multiple phases of this type if you wish to deploy your application environments
across different phases.

12.1 Parameters

Parameter Type Re-
quired

De-
fault

Description

type string Yes han-
del

This must always be handel for the Handel phase type.

name string Yes The value you want to show up in the CodePipeline UI as your
phase name.

environ-
ments_to_deploy

list<string>Yes A list of one or more environment names from your Handel file
that you wish to deploy in this phase.

12.2 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

12.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the Handel phase being configured:

version: 1

pipelines:

(continues on next page)

31

Handel-CodePipeline Documentation, Release 0.0.6

(continued from previous page)

dev:
phases:
- type: handel

name: DevDeploy
environments_to_deploy:
- dev

...

32 Chapter 12. Handel

CHAPTER 13

Handel Delete

The Handel Delete phase type configures a pipeline phase to delete one or more of your Handel application environ-
ments that was previously deployed. This phase is useful if you want to spin up an ephemeral environment, run tests
against it, and delete the environment after the tests.

Warning: This environment will DELETE all resources in an environment, including data resources such
as RDS, ElastiCache, and DynamoDB!

The data from these will likely be unrecoverable once deleted. You should only use this phase type against
ephemeral environments that don’t need to persist data.

Use this phase at your own risk. It is highly recommended you double-check which environments are being
deleted before adding this phase to a pipeline.

13.1 Parameters

Parameter Type Re-
quired

Default Description

type string Yes han-
del_delete

This must always be handel_delete for the Handel Delete phase
type.

name string Yes The value you want to show up in the CodePipeline UI as your
phase name.

environ-
ments_to_delete

list<string>Yes A list of one or more environment names from your Handel file
that you wish to delete in this phase.

13.2 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

33

Handel-CodePipeline Documentation, Release 0.0.6

13.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the Handel phase being configured:

version: 1

pipelines:
dev:
phases:
- type: handel_delete

name: Teardown
environments_to_delete:
- dev

...

34 Chapter 13. Handel Delete

CHAPTER 14

Invoke Lambda

The Invoke Lambda phase type configures a pipeline phase to execute an arbitrary Lambda function in your account.

14.1 Parameters

Parameter Type Re-
quired

Default Description

type string Yes in-
voke_lambda

This must always be invoke_lambda for the Invoke
Lambda phase type.

name string Yes The value you want to show up in the CodePipeline UI
as your phase name.

func-
tion_name

string Yes The name of the Lambda function you wish to invoke
in this phase.

func-
tion_parameters

map<string,
string>

No An object of parameter values to pass into the Lambda
function.

14.2 Secrets

This phase type doesn’t prompt for any secrets when creating the pipeline.

14.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the GitHub phase being configured:

version: 1

pipelines:

(continues on next page)

35

Handel-CodePipeline Documentation, Release 0.0.6

(continued from previous page)

dev:
...
phases:
- type: invoke_lambda

name: InvokeMyFunction
function_name: my_function_name_to_invoke
function_parameters:

myParam1: hello
myParam2: world

...

36 Chapter 14. Invoke Lambda

CHAPTER 15

NPM

The NPM phase type configures a pipeline phase to deploy one or more of your application npmjs.

15.1 Parameters

Param-
eter

Type Re-
quired

Default Description

type string Yes npm This must always be npm for the NPM phase type.
name string Yes The value you want to show up in the CodePipeline UI as your

phase name.
build_imagestring No aws/codebuild/nodejs:6.3.1The code build image needed to deploy project to npm. See here

for more info AWS Codebuild Docs

15.2 Secrets

In addition to the parameters specified in your handel-codepipeline.yml file, this phase will prompt you for the follow-
ing secret information when creating your pipeline:

• NPM Token

For Security reasons these are not saved in your handel-codepipeline.yml file. The NPM token can be found in your
.npmrc file see here for more information.

15.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the NPM phase being configured:

37

http://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref.html
http://blog.npmjs.org/post/118393368555/deploying-with-npm-private-modules

Handel-CodePipeline Documentation, Release 0.0.6

version: 1

pipelines:
dev:
phases:
...
- type: npm

name: npmDeploy
...

38 Chapter 15. NPM

CHAPTER 16

Pypi

The Pypi phase type configures a pipeline phase to deploy one or more of your application environments using the
Pypi library.

16.1 Parameters

Param-
eter

Type Re-
quired

Default Description

type string Yes pypi This must always be pypi for the Pypi phase type.
name string Yes The value you want to show up in the CodePipeline UI as your

phase name.
server string No pypi The full url for the pypi repo ie: https://test.pypi.org/legacy/
build_imagestring No aws/codebuild/python:3.6.5The code build image needed to deploy project to pypi. See here

for more info AWS Codebuild Docs

16.2 Secrets

In addition to the parameters specified in your handel-codepipeline.yml file, this phase will prompt you for the follow-
ing secret information when creating your pipeline:

• Pypi Username.

• Pypi Password.

For Security reasons these are not saved in your handel-codepipeline.yml file.

16.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the Pypi phase being configured:

39

https://test.pypi.org/legacy/
http://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref.html

Handel-CodePipeline Documentation, Release 0.0.6

version: 1

pipelines:
dev:
phases:
...
- type: pypi

name: pypiDeploy
server: https://testpypi.python.org/pypi

...

40 Chapter 16. Pypi

CHAPTER 17

Runscope

The Runscope phase type configures a pipeline phase to execute tests from a Runscope bucket.

17.1 Parameters

Parame-
ter

Type Re-
quired

Default Description

type string Yes run-
scope

This must always be runscope for the Runscope phase type.

name string Yes The value you want to show up in the CodePipeline UI as your phase
name.

17.2 Secrets

This phase will prompt you for the following secret information when creating your pipeline:

• Runscope Trigger URL

• Runscope API Access Token

These secrets are not saved in your handel-codepipeline.yml file because they allow others to invoke your tests and
make API calls to Runscope on your behalf.

17.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the GitHub phase being configured:

41

Handel-CodePipeline Documentation, Release 0.0.6

version: 1

pipelines:
dev:
...
phases:
- type: runscope

name: RunscopeTests
...

42 Chapter 17. Runscope

CHAPTER 18

Slack Notify

The Slack Notify phase type configures a pipeline phase to send a notification to a Slack channel.

18.1 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes slack_notifyThis must always be slack_notify for the Slack Notify phase type.
name string Yes The value you want to show up in the CodePipeline UI as your phase name.
mes-
sage

string Yes The message to send to the Slack channel when this phase executes.

chan-
nel

string Yes The Slack channel you wish to send to. This can either be a username, such
as “@dsw88”, or a channel, such as “#mydeploys”.

Important: In the channel parameter above, make sure that you put your channel names in quotes, since YAML
treats the # character as a comment and will cause your Handel-CodePipeline file to be invalid.

18.2 Secrets

In addition to the parameters specified in your handel-codepipeline.yml file, this phase will prompt you for the follow-
ing secret information when creating your pipeline:

• Slack notify URL

This is not saved in your handel-codepipeline.yml file because by having this URL others can also post to your Slack
instance.

43

Handel-CodePipeline Documentation, Release 0.0.6

18.3 Example Phase Configuration

This snippet of a handel-codepipeline.yml file shows the GitHub phase being configured:

version: 1

pipelines:
dev:
...
phases:
- type: slack_notify

name: Notify
channel: "#mydeployschannel"
message: Successfully deployed the app!

...

44 Chapter 18. Slack Notify

	Introduction
	Installation
	Tutorial
	CLI Reference
	Using Handel-CodePipeline
	Handel-CodePipeline File
	Approval
	CloudFormation
	CodeBuild
	CodeCommit
	GitHub
	Handel
	Handel Delete
	Invoke Lambda
	NPM
	Pypi
	Runscope
	Slack Notify

